Asian Resonance Stability Theorems for Impulsive **Functional Differential Equations**

Abstract

In this paper, sufficient conditions are derived for asymptotic stability and uniformly asymptotic stability for impulsive functional differential equation using piecewise continuous differential equation. Keywords: Stability, Impulsive Functional Differential Equation, Liapunov

functional Introduction

Consider the impulsive functional differential equation

 $(x'(t) = f(t, x_t),$

 $t \neq t_k \ t \geq t_0$

(1)

 $\Delta x = I_k(t, (x_t^{-})),$ $t = t_k, k \in Z^+$ $f: J \times PC \to R^n, \Delta x = x(t) - x(t^-), t_0 < t_1 < \cdots < t_k < t_{k+1} < t_k < t_{k+1} < t_k < t_$ Where ..., With $t_k \to \infty$ as $k \to \infty$ and $I_k: J \times S(\rho) \to R^n$, where $J = [t_0, \infty)$, $S(\rho) = \{x \in R: |x| < \rho\}$. $PC = PC([-\tau, 0], R^n)$ denotes the space of piecewise right continuous functions $\varphi: [-\tau, 0] \rightarrow \mathbb{R}^n$ with sup-norm $\|\varphi\|_{\infty} = \sup_{\tau \le s \le 0} |\varphi(s)|$ and the norm $\|\varphi\|_2 = (\int_{-\tau}^0 |\varphi(s)|^2 ds)^{1/2}$, where τ is a positive constant, $\|.\|$ is a norm in $\mathbb{R}^n \cdot x_t \in \mathbb{PC}$ is defined by $x_t(s) =$ x(t+s) for $-\tau \le s \le 0.x'(t)$ denotes the right-hand derivative of $x(t).Z^+$ is the set of all positive integers,

Let f(t, 0) = 0 and J(0) = 0, then x(t) = 0 is the zero solution of (1). Set $PC(\rho) = \{\varphi \in PC \colon \|\varphi\|_{\infty} < \rho\}, \forall \rho > 0.$

Definition 1.1

Let σ be the initial time, $\forall \sigma \in R$, the zero solution of (1) is said to be

- stable if , for each $\sigma \ge t_0$ and $\varepsilon > 0$, there is a $\delta = \delta(\sigma, \varepsilon) > 0$ such a) that , for $\varphi \in PC(\delta)$, a solution $x(t,\sigma,\varphi)$ satisfies $|x(t,\sigma,\varphi)| < \varepsilon$ for $t \geq t_0$.
- b) uniformly stable if it is stable and δ in the definition of stability is independent of σ
- asymptotically stable if it is stable and, for each $t_0 \in R_+$, there is an c) $\eta = \eta(t_0) > 0$ such that, for $\varphi \in PC(\eta), x(t, \sigma, \varphi) \to 0$ as $t \to \infty$
- d) uniformly asymptotically stable if it is uniformly stable and there is an $\eta>0$ and , for each $\varepsilon>0,$ a $T=T(\varepsilon)>0$ such that , for $\varphi\in$ $PC(\eta), |x(t,\sigma,\varphi)| < \varepsilon \text{ for } t \ge t_0 + T$

Definition 1.2

A functional $V(t, \varphi): J \times PC(\rho) \to R_+$ belong to class $v_o(.)$ (a set of Liapunov like functional) if

- a) V is continuous on $[t_{k-1}, t_k) \times PC(\rho)$ for each $k \in \mathbb{Z}_+$, and for all $\varphi \in PC(\rho)$ and $k \in \mathbb{Z}_+$, the limit $\lim_{(t,\varphi)\to(t_k^-,\varphi)} V(t,\varphi) = V(t_k^-,\varphi)$ exists.
- *V* is locally Lipchitzian in φ in each set in *PC*(ρ) and *V*(t, 0) = 0 The b) set \Re is defined by $\Re = \{W \in C(R_+, R_+): \text{ strictly increasing and } \}$ W(0) = 0

Main Results

Theorem 1

Assume that there exist $V_1, V_2 \in v_0(.), W_1, W_2, W_3, W_4 \in \Re$ such that

- $W_1(|\varphi(0)|) \le V(t,\varphi) \le W_2(|\varphi(0)|)$, where $V(t,\varphi) = V_1(t,\varphi) + V_2(t,\varphi)$ Ι.
- II. $V(t_k, x + I_k(t_k, x)) - V(t_k, x) \le 0$
- $aV_1'(t,x_t) + bV_2'(t,x_t) \le -\lambda(t)W_3(\inf \{|x(s)|: t-h \le s \le t\})$ 111
- $pV_{1}^{'}(t,x_{t})+qV_{2}^{'}(t,x_{t})\leq 0$ IV.

where $a^2 + b^2 \neq 0$, $p^2 + q^2 \neq 0$ and $\int_0^\infty \lambda(s) ds = \infty$

(A) Suppose further that there is a $\mu = \mu(\gamma) > 0$ for each $0 < \gamma < \gamma$ H_1 such that

$$pV'_{1}(t,x_{t}) + qV'_{2}(t,x_{t}) \le -\mu V'_{1}(t,x_{t})$$
(2)

if $|x(t)| \ge \gamma$. If either (*i*) a > 0, b > 0 or (*ii*) $p \ge 0, q$

> 0 hold, then the zero solution of (1) is uniformly and asymptotically stable.

Sanjay K. Srivastava

Associate Professor, Deptt. of Applied Sciences, Beant College of Engineering and Technology, Gurdaspur, Punjab

Neeti Bhandari

Research Scholar, Deptt. of Applied Sciences, Punjab Technical University, Jalandhar, Punjab.

Neha Wadhwa

Assistant Professor, Deptt. of Applied Sciences, Amritsar College of Engineering and Technology, Amritsar,

E: ISSN No. 2349-9443

(B) The same is concluded if $pV'_1(t, x_t) + qV'_2(t, x_t) \le \mu V'_1(t, x_t)$ holds in place of (2) and if either (*i*) a > 0, b> 0 or (ii)p > 0, q > 0.

Proof

We first prove the uniform stability. For given $\varepsilon > 0$, we may choose a $\delta = \delta(\varepsilon) > 0$ such that $W_2(\delta) < W_1(\varepsilon)$. For any

 $\sigma \ge t_0$ and $\varphi \in PC_{\delta}$, let $x(t, \sigma, \varphi)$ be the solution of (1). We will prove that

 $\begin{aligned} |x(t,\sigma,\varphi)| &\leq \varepsilon, \qquad t \geq \sigma \\ \text{Let} \qquad x(t) &= x(t,\sigma,\varphi) \text{ and } V_1(t) = V_1(t,x_t), V_2(t) = \\ V_2(t,x_t) \text{ and } V(t) &= V(t,x_t). \end{aligned}$

Then by assumption (iv),

 $V'(t, x_t) \leq 0$, $\sigma \leq t_{k-1} \leq t < t_k$, $k \in Z^+$ and so V(t) is non increasing on the interval of the form $[t_{k-1}, t_k)$. From condition (ii)

$$\begin{split} &V(t_k) - V(t_k^-) = V\left(t_k, x(t_k^-) + I_k(t_k, x(t_k^-))\right) - \\ &V(t_k^-, x(t_k^-)) \leq 0 \\ &\text{Thus V(t) is non increasing on } [\sigma, \infty). \text{ We have } \\ &W_1(|x(t)|) \leq V(t) \leq V(\sigma) \leq W_2(\sigma) < W_1(\varepsilon), \\ &t \geq \sigma \end{split}$$

This implies with the monotonicity of $W_1,|x(t)|<\epsilon$ for $t\geq\sigma$ and so that the zero solution of (1) is uniformly stable.

To show asymptotic stability, for a given $t_0 \in R_+$ and a fixed $0 < H_2 < H_1$, take $\eta = \eta(t_0) = \delta(t_0, H_2) > 0$, where δ is that in the definition of stability and for a given $\phi \in PC(\eta)$, let $x(t) = x(t, \sigma, \phi)$ be a solution of (1). Suppose for contradiction that $x(t) \not\rightarrow 0$ as $t \rightarrow \infty$. Then there is a sequence $\{T_i\}$ and an $\epsilon_0 > 0$ with $T_i \rightarrow \infty$ and $|x(T_i)| > \epsilon_0$. Define $\epsilon_2 = W_2^{-1}(\frac{W_1(\epsilon_0)}{2})$ then there is a sequence $\{s_i\}$ with $s_i \rightarrow \infty$ and $|x(s_i)| < \epsilon_2$. Otherwise there is an $S \geq t_0$ such that $|x(t)| \geq \epsilon_2$ for $t \geq S$ and

 $av_1(t) + bv_2(t) \le$

 $av_1(S + h) + bv_2(S + h) - \int_{S+h}^t \lambda(s) W_4(\inf\{|x(\sigma)|: s - h \le \sigma \le sds +$

 $S+h{\leq}tk{\leq}t[Vtk{-}S{+}h{\leq}tk{\leq}t[Vtk{-}Vtk{-})]$

$$\leq av_1(S+h) + bv_2(S+h) - W_4(\varepsilon_2) \int_{c}^{t} \lambda(s) ds \rightarrow -\infty$$

as $t \to \infty,$ which contradicts either $av_1(t) + bv_2(t) \geq 0$ if (i) holds or

 $av_1(t) + bv_2(t) \ge -|a|W_2(H_2) - |b|(pv_1(t_0) + qV_2(t_0))/q$

if (ii) holds.

In Case (A), we may assume $T_{i-1} < s_i < T_i$ by choosing and renumbering if necessary. Then we can take a sequence $\{t_i\}$ such that $s_i < t_i < T_i, |x(t_i)| = \epsilon_2$ and $|x(t)| > \epsilon_2$ for $t_i < t \le T_i$.

$$\begin{split} \text{Then } pv_1(T_i) + qv_2(T_i) - \left(pv_1(T_{i-1}) + qv_2(T_{i-1}) \right) \\ & \leq pv_1(T_i) + qv_2(T_i) - \left(pv_1(t_i) + qv_2(t_i) \right) \\ & + \sum_{t_i \leq t_k \leq T_i} \left[V(t_k) - V(t_k^-) \right] \\ & \leq -\mu(\epsilon_2) \left(v_1(T_i) - v_1(t_i) \right) \\ & \leq -\mu(\epsilon_2) W_1(\epsilon_0)/2 \\ \text{and a contradiction follows from} \end{split}$$

 $\begin{aligned} & pv_{1}(T_{n}) + qv_{2}(T_{n}) \\ &= pv_{1}(T_{1}) + qv_{2}(T_{1}) \\ &+ \sum_{i=2}^{n} [pv_{1}(T_{i}) + qv_{2}(T_{i}) \\ &- (pv_{1}(T_{i-1}) \\ &+ \\ &+ \sum_{T_{i-1} \leq t_{k} \leq T_{i}} [V(t_{k}) - V(t_{k}^{-})] \\ &\leq pv_{1}(T_{1}) + qv_{2}(T_{1}) - \frac{(n-1)\mu(\varepsilon_{2})W_{1}(\varepsilon_{0})}{2} \to -\infty \end{aligned}$

Asian Resonance

as $n \to \infty$

In Case (B), we may assume $s_{i-1} < T_i < s_i$ and take $\{t_i\}$ with $T_i < t_i < s_i$, $|x(t_i)| = \varepsilon_2$ and $|x(t)| > \varepsilon_2$ for $T_i \le t < t_i$ so that

$$pv_{1}(t_{i}) + qv_{2}(t_{i}) - (pv_{1}(t_{i-1}) + qv_{2}(t_{i-1})))$$

$$\leq pv_{1}(t_{i}) + qv_{2}(t_{i}) - (pv_{1}(T_{i}) + qv_{2}(T_{i}))$$

$$+ \sum_{\substack{T_{i} \leq t_{k} \leq t_{i}}} [V(t_{k}) - V(t_{k}^{-})]$$

$$\leq \mu(\varepsilon_{2})(v_{1}(t_{i}) - v_{1}(T_{i}))$$

$$\leq -\mu(\varepsilon_{2})W_{1}(\varepsilon_{0})/2$$

This implies a contradiction by the same argument as in case (A) $% \left(A\right) =0$

Therefore, $x(t) \rightarrow 0$ as $t \rightarrow \infty$. The proof is complete. **Theorem 2.**

Assume that there exist $V_1, V_2 \in v_0(.)$ and $W_1, W_2, W_3, W_4 \in \Re$ such that

- a) $W_1|\varphi(0)| \le V(t,\varphi) \le W_2|\varphi(0)|$ where $V(t,\varphi) = V_1(t,\varphi) + V_2(t,\varphi)$
- b) $V(t_k, x + I_k(t_k, x)) V(t_k^-, x) \le 0, k \in \mathbb{Z}^+$
- c) $aV'_{1}(t, x_{t}) + bV'_{2}(t, x_{t}) \le -\lambda(t)W_{3}(\inf\{|x(s)|; t-h \le s \le t\})$ and $pV'_{1}(t, x_{t}) + qV'_{2}(t, x_{t}) \le 0$

Where $a^{2} + b^{2} \neq 0$, $p^{2} + q^{2} \neq 0$ and

$$\lim_{S \to \infty} \int_{t}^{t+S} \lambda(s) ds = \infty \text{ uniformly in } t \in R_{+}$$

A. Suppose that there is a $\mu = \mu(\gamma) > 0$ for each $0 < \gamma < H_1$ such that

$$\begin{aligned} pV_1(t,x_t) + qV_2(t,x_t) \\ \leq -\mu V_1(t,x_t) \end{aligned} (3) \\ \text{If } |x(t)| \geq \gamma. \text{ If either (i) } a > 0, b \geq 0 \text{ or (ii)} \\ p \geq 0, q \geq 0 \text{ hold, then the zero solution of (1)} \\ \text{ is uniformly asymptotically stable.} \end{aligned}$$

B. The same is concluded if (3) is replaced by $pV'_{1}(t, x_{t}) + qV'_{2}$ $\leq \mu V'_{1}(t, x_{t})$

And if either (i) $a > 0, b \ge 0$ or (ii) $p > 0, q \ge 0$ hold **Proof**

Uniform Stability can be proven as stability in Theorem 1.

Set $\eta = \delta(H_2)$ for a fixed $0 < H_2 < H_1$ and δ in the definition of uniform stability. For given $t_0 \in R_+, \varphi \in C_\eta$, let $x(t) = x(t, \sigma, \varphi)$ be a solution of (1). Let $\varepsilon > 0$ be given and take $\delta = \delta(\varepsilon) > 0$ of uniform stability. Define $\delta_1 = W_2^{-1}(\frac{W_1(\delta)}{2})$. Choose a $S = S(\varepsilon) > 0$ with

$$\int_{a}^{b} \lambda(s) ds > 2(|a|W_2(H_2) + |b|W_3(H_2))/W_4(\delta_1)$$

For $t \in R_+$ and an integer $N = N(\varepsilon) \ge 1$ with $N\mu(\delta_1)W_1(\delta)/2 > 2(|p|W_2(H_2) + |q|W_3(H_2))$

E: ISSN No. 2349-9443

Define $T = T(\varepsilon) = N(S + 2h)$. Suppose, for contradiction, that $||x_t|| \ge \delta$ for $t_0 \le t \le t_0 + T$. In Case (A), for $1 \le i \le N$, there is a

 $+(i-1)(S+2h) \le s_i \le t_0 + (i-1)(S+2h) + h + S$ With $|x(s_i)| < \delta_1$. Otherwise $|x(t)| \ge \delta_1$ on this interval and, for $I_i = [t_0 + (i-1)(S+2h) + h, t_0 + (i-1)(S+2h+h+S, v1t=V1(t,xt))]$ and v2t=V2(t,xt), we have

 $\begin{aligned} -2(|a|W_2(H_2) + |b|W_3(H_2)) \\ &\leq av_1(t_0 + (i-1)(S+2h) + h + S) + bv_2(t_0 \\ &+ (i-1)(S+2h) + h + S) \\ (-av_1(t_0 + (i-1)(S+2h) + h) + bv_2(t_0 + h)) \end{aligned}$

(i-1)(S+2h)+h))

 $\leq -\int \lambda(t)W_4(\inf\{|x(s)|: t-h \leq s \leq t\})ds \\ \leq -W_4(\delta_1)\int \lambda(t) < -2(|a|W_2(H_2) + |b|W_3(H_2)) \\ \text{This inequality also holds true as per condition (ii)} \\ \text{a contradiction.}$

From the supposition , for $1 \le i \le N$, there is a $t_0 + (i-1)(S+2h) + h + S \le T_i \le t_0 + i(S+2h)$ Such that $|x(T_i)| \ge \delta$. Thus, there is an $s_i < t_i < T_i$ with $|x(t_i)| = \delta_1$ and $|x(t)| > \delta_1$ for $t_i < t \le T_i$. We obtain $pv_1(t_0 + i(S+2h)) + qv_2(t_0 + i(S+2h)) - (pv_1(t_0 + (i-1)(S+2h)) + qv_2(t_0 + (i-1)(S+2h))) + qv_2(t_0 + (i-1)(S+2h))) \le pv_1(T_i) + qv_2(T_i) - (pv_1(t_i) + qv_2(t_i))$

$$\leq -\mu(\delta_1) \left(v_1(T_i) - v_1(t_i) \right) \leq -\mu(\delta_1) W_1(\delta)/2$$

And $\begin{aligned} -2(|p|W_2(H_2) + |q|W_3(H_2)) &\leq pv_1(t_0 + N(S + 2h)) + \\ qv_2(t_0 + N(S + 2h)) - (pv_1(t_0) + q(v_2(t_0))) \\ &= \sum_{i=1}^{N} (pv_1(t_0 + i(S + 2h)) + qv_2(t_0 + i(S + 2h))) - \\ (pv1t0 + i-1S + 2h + qv2t0 + i-1S + 2h) \end{aligned}$

 $\leq -N\mu(\delta_1)W_1(\delta)/2 < -2(|p|W_2(H_2) + |q|W_3(H_2)),$ This inequality also holds true as per condition (ii) a contradiction.

In Case (B), we can take, for $1 \le i \le N$, $t_0 + (i-1)(2h+S) + h \le s_i \le t_0 + i(2h+S)$ with $|x(s_i)| < \delta_1$, $t_0 + (i-1)(2h+S) \le T_i \le t_0 + (i-1)(2h+S) + h$ with $|x(T_i)| \ge \delta$ and $T_i < t_i < s_i$ with $|x(t_i)| = \delta_1$, $|x(t)| > \delta_1$ for $T_i \le t < t_i$ so that $pv_1(t_0 + i(S+2h)) + qv_2(t_0 + i(S+2h)) - (pv_1(t_0 + (i-1)(S+2h))) + qv_2(t_0 + (i-1)(S+2h))) \le pv_1(t_i) + qv_2(t_i) - (pv_1(T_i) + qv_2(T_i))$

 $\leq \mu(\delta_1)(v_1(t_i) - v_1(T_i)) \leq -\mu(\delta_1)W_1(\delta)/2$

This inequality also holds true as per condition (ii) a contradiction follows from this as in case(A)

Consequently $||x_{t'}|| < \delta$ for some $t_0 \le t' \le t_0 + T$ and $|x(t)| < \varepsilon$ for $t \ge t_0 + T$. This completes the proof. **Corollary**

If there are $V_1, V_2 \in v_0(.)$ and $W_1, W_2, W_3, W_4 \in \Re$ satisfying

a) $W_1|\varphi(0)| \le V(t,\varphi) \le W_2|\varphi(0)|$

b)
$$0 \le V(t, \varphi) \le W_3(||\varphi||)$$
 where $V(t, \varphi) =$

$$V_1(t,\varphi) + V_2(t,\varphi)$$

C)
$$V(t_k, x + I_k(t_k, x)) - V(t_k^-, x) \le 0$$

d)
$$V'_{1}(t, x_{t}) + c_{1}V'_{2}(t, x_{t}) \leq 0$$

e)
$$V'_1(t, x_t) + c_2 V'_2(t, x_t) \le$$

$$-\lambda(t)W_4(\inf\{|x(s)|; t-h \le s \le t\})$$

Where $c_1 \neq c_2$ either $c_1 \geq 0$ or $c_2 \geq 0$ and $\lim_{S \to \infty} \int_r^{t+S} \lambda(s) ds = \infty$ uniformly in $t \in R_+$

Asian Resonance

Then the zero solution of (1) is uniformly asymptotically stable. **Proof**

We may assume that $c_1 > c_2$. Then $c_1 \ge 0$, if $c_2 = 0$

 $V'_{1}(t, x_{t}) + c_{1}V'_{2}(t, x_{t}) \le 0 \le -V'_{1}(t, x_{t})$ And the conditions of theorem 2(A ii) are satisfied. If $c_{1} > 0$ $V'_{1}(t, x_{t}) + c_{1}V'_{2}(t, x_{t}) \le (c_{1} - c_{2})V'_{2}(t, x_{t})$

$$V'_{2}(t, x_{t}) \leq (c_{1} - c_{2})V'_{2}(t, x_{t})$$

 $\leq -(\frac{(c_{1} - c_{2})}{c_{1}})V'_{1}(t, x_{t})$

Implies uniform stability by Theorem 2(A ii).

Example Consider the impulsive differential equation

x'(t) = -a(t)f(x(t)) + b(t)g(x(t-h))

$$x(t_k) - x(t_k^{-}) = c_k x(t_k^{-}), \ k \in \mathbb{Z}^+$$

Where $a: R_+ \to R_+, b: R_+ \to R, f, g: R \to R$ are continuous, xf(x) > 0, for $x \neq 0, |g(x)| \le c|f(x)|$ for c > 0 and $g(x) \ne 0$ for $x \ne 0, |1+c_k| \le 1, k \in Z^+$ and $\sum_{k=1}^{\infty} |1-|1+c_k| = \infty$

If $\int_{t}^{t+h} |b(s)| ds$ is bounded, $a(t) - \alpha c |b(t+h)| \ge 0$ For some $\alpha > 1$, and for some $1 \le \beta \le \alpha$, $\lambda(t) = a(t) - \beta c |b(t+h)| + (\beta - 1) |b(t)|$ satisfies

$$\lim_{S\to\infty}\int_t \lambda(s)ds = \infty$$

Uniformly in $t \in R_+$, then the zero solution is uniformly asymptotically stable. **Proof**

Let $V = V_1 + V_2$ where $V_1(t, \varphi) = |\varphi(0)|, V_2(t, \varphi) = \int_{-h}^{0} |b(t+s+h)| |g(\varphi(s)| ds$

Then $V_2(t,\varphi) \leq \int_t^{t+h} |b(s)| ds W_3(||\varphi||)$ for some function $W_3 \in \Re$

And $V_1(t_k, x + c_k x) - V_1(t_k^-, x) = |(1 + c_k)x| - |x| = [1 - |1 + c_k|]V(t_k^-, x)$

Let $\lambda_k = 1 - |1 + c_k|$; then $\sum_{k=1}^{\infty} \lambda_k = \infty$. We check that for any $\alpha > 0$, there is a $\beta > 0$ such that $V(t, x_t) \ge \alpha$ implies $V_1(t, x_t) \ge \beta$.

Otherwise we must have $\liminf_{t\to\infty}V_1(t,x_t)=0$

We let $V(t) = V_1(t, x_t) + V_2(t, x_t)$

Then $V(t_k) - V(t_k^-) = V_1(t_k, x(t_k^-) + c_k x(t_k^-)) - V_1(t_k^-, x(t_k^-)) \le 0$

$$V'_{1}(t, x_{t}) + \beta V'_{2}(t, x_{t})$$

$$\leq -(a(t) - \beta c|b(t+h)|)|f(x(t))|$$
$$-(\beta - 1)|b(t)||g(x(t-h))|$$

+
$$\sum V(t_k) - V(t_k^-)$$

 $0 \leq t_k \leq t \leq -\lambda(t) W_4(\inf\{|x(s)|: t - h \leq s \leq t\})$

If $||\mathbf{x}_t|| \le H$ for a fixed $0 < H < \infty$ and some function W_4 . If $\beta = 1$, for $\alpha \ne 1$ $V'_1(t, \mathbf{x}_t) + \alpha V'_2(t, \mathbf{x}_t) \le 0$ If $\beta > 1$ $V'_1(t, \mathbf{x}_t) + 1$ $V'_2(t, \mathbf{x}_t) \le 0$

The conditions of the corollary are satisfied and hence the zero solution is uniformly asymptotically stable. **References**

- 1. D.D. Bainov, P.S. Simeonov, Systems with Impulse Effect: Stability Theory and Applications, Horwood, Chicestar, 1989.
- 2. V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulse Differential Equations, World Scientific, Singapore 1989.

E: ISSN No. 2349-9443

- J. Shen, Z. Luo, Impulsive stabilization of functional differential equations via Liapunov functionals, J. Math. Anal.Appl. 240 (1999) 1–15.
- Katsumasa Kobayashi, Stability Theorems for Functional Differential Equations, Nonlinear Analysis, Theory. Methods & Applicorions, Vol. 20, No. 10, pp. 1183-I 192, 1993.
- 5. Burton T. & Hatvani L., Stability theorems for nonautonomous functional differential equations by

Asian Resonance

Liapunov functionals, Tokoku math. J. 41, 65-104 (1989).

- Lakshmikantham V., Leela S. & Sivasundaram S., Lyapunov functions on product spaces and stability theory of delay differential equations, J. math. Analysis Applic. 154, 391-402 (1991).
- L. Hatvani, On the asymptotic stability for nonautonomous functional differential equations by Liapunov functionals, Trans. Amer. Math. Soc. 354 (2002) 3555–3571.