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functional 
Introduction 

 Consider the impulsive functional differential equation 

 
𝑥 ′ 𝑡 = 𝑓 𝑡, 𝑥𝑡 ,                           𝑡 ≠ 𝑡𝑘  𝑡 ≥ 𝑡0

∆𝑥 = 𝐼𝑘(𝑡, (𝑥𝑡
−)),                 𝑡 = 𝑡𝑘 , 𝑘 ∈ 𝑍+                                       (1)  

Where 𝑓: 𝐽 × 𝑃𝐶 → 𝑅𝑛 , ∆𝑥 = 𝑥 𝑡 − 𝑥 𝑡− , 𝑡0 < 𝑡1 < ⋯𝑡𝑘 < 𝑡𝑘+1 <
⋯ , With 𝑡𝑘 → ∞ as 𝑘 → ∞ and 𝐼𝑘 : 𝐽 × 𝑆(𝜌) → 𝑅𝑛 , where 𝐽 =  𝑡0, ∞ , 
𝑆 𝜌 =  𝑥 ∈ 𝑅:  𝑥 < 𝜌 . 𝑃𝐶 = 𝑃𝐶( −𝜏, 0 , 𝑅𝑛) denotes the space of 

piecewise right continuous functions 𝜑: [−𝜏, 0] → 𝑅𝑛  with sup-norm 

 𝜑 ∞ = 𝑠𝑢𝑝−𝜏≤𝑠≤0|𝜑(𝑠)| and the norm  𝜑 2 = (  𝜑(𝑠) 2𝑑𝑠)
0

−𝜏

1/2, 
where 𝜏 is 

a positive constant,  .   is a norm in 𝑅𝑛 . 𝑥𝑡 ∈ 𝑃𝐶 is defined by 𝑥𝑡 𝑠 =

𝑥(𝑡 + 𝑠) for −𝜏 ≤ 𝑠 ≤ 0. 𝑥 ′(𝑡) denotes the right-hand derivative of 𝑥 𝑡 . 𝑍+ 
is the set of all positive integers, 
  Let 𝑓 𝑡, 0 = 0 and 𝐽 0 = 0, then 𝑥 𝑡 = 0 is the zero solution of (1). Set 

𝑃𝐶 𝜌 =  𝜑 ∈ 𝑃𝐶:  𝜑 ∞ < 𝜌 , ∀𝜌 > 0. 
Definition 1.1  

 Let 𝜎 be the initial time, ∀ 𝜎 ∈ 𝑅, the zero solution of (1) is said 

to be 
a) stable if , for each 𝜎 ≥ 𝑡0 and 𝜀 > 0, there is a 𝛿 = 𝛿(𝜎, 𝜀) > 0 such 

that , for 𝜑 ∈ 𝑃𝐶(𝛿), a solution 𝑥(𝑡, 𝜎, 𝜑) satisfies |𝑥(𝑡, 𝜎, 𝜑)| < 𝜀 for 

𝑡 ≥ 𝑡0. 
b) uniformly stable if it is stable and 𝛿 in the definition of stability is 

independent of 𝜎 

c) asymptotically stable if it is stable and, for each 𝑡0 ∈ 𝑅+, there is an 

𝜂 = 𝜂(𝑡0) > 0 such that, for 𝜑 ∈ 𝑃𝐶 𝜂 , 𝑥 𝑡, 𝜎, 𝜑 → 0 𝑎𝑠 𝑡 → ∞ 
d) uniformly asymptotically stable if it is uniformly stable and there is an 

𝜂 > 0 and , for each 𝜀 > 0, a 𝑇 = 𝑇(𝜀) > 0 such that , for 𝜑 ∈
𝑃𝐶 𝜂 , |𝑥(𝑡, 𝜎, 𝜑)| < 𝜀 for 𝑡 ≥ 𝑡0 + 𝑇 

Definition 1.2  

 A functional 𝑉 𝑡, 𝜑 : 𝐽 × 𝑃𝐶(𝜌) → 𝑅+ belong to class 𝑣𝑜(. ) ( a set 

of Liapunov like functional) if 
a) 𝑉 is continuous on [𝑡𝑘−1, 𝑡𝑘) × 𝑃𝐶(𝜌) for each 𝑘 ∈ 𝑍+, and for all 

𝜑 ∈ 𝑃𝐶(𝜌) and 𝑘 ∈ 𝑍+, the limit lim 𝑡,𝜑 →(𝑡𝑘
−,𝜑) 𝑉 𝑡, 𝜑 = 𝑉(𝑡𝑘

−, 𝜑) 

exists. 
b) 𝑉 is locally Lipchitzian in 𝜑 in each set in 𝑃𝐶(𝜌) and 𝑉 𝑡, 0 = 0 The 

set ℜ is defined by ℜ = {𝑊 ∈ 𝐶 𝑅+, 𝑅+ : strictly increasing and 
𝑊 0 = 0 

Main Results 
Theorem 1  

 Assume that there exist  𝑉1, 𝑉2 ∈ 𝑣0 .  , 𝑊1, 𝑊2,𝑊3, 𝑊4 ∈ ℜ such 

that  
I. 𝑊1 ǀ𝜑 0 ǀ ≤ 𝑉 𝑡, 𝜑 ≤ 𝑊2(ǀ𝜑 0 ǀ),where 𝑉 𝑡, 𝜑 = 𝑉1 𝑡, 𝜑 +  𝑉2 𝑡, 𝜑  

II. 𝑉 𝑡𝑘 , 𝑥 + 𝐼𝑘 𝑡𝑘 , 𝑥  −  𝑉 𝑡𝑘
−, 𝑥 ≤ 0 

III. a 𝑉1
′ 𝑡, 𝑥𝑡 + 𝑏𝑉2

′  𝑡, 𝑥𝑡  ≤  − 𝜆 𝑡  𝑊3  𝑖𝑛𝑓    ǀ𝑥 𝑠 ǀ ∶ 𝑡 − 𝑕 ≤ 𝑠 ≤ 𝑡   

IV. 𝑝𝑉1
′ 𝑡, 𝑥𝑡 + 𝑞𝑉2

′  𝑡, 𝑥𝑡 ≤ 0 

where  𝑎2 + 𝑏2 ≠ 0,   𝑝2 + 𝑞2 ≠ 0 𝑎𝑛𝑑  𝜆(𝑠)
∞

0
𝑑𝑠 = ∞  

(A) Suppose further that there is a 𝜇 = 𝜇 𝛾 > 0 𝑓𝑜𝑟 𝑒𝑎𝑐𝑕  0 <  𝛾 <
𝐻1 such that 

 𝑝𝑉1
′ 𝑡, 𝑥𝑡 + 𝑞𝑉2

′  𝑡, 𝑥𝑡 ≤  −𝜇 𝑉1
′ 𝑡, 𝑥𝑡                                                                     (2) 

if ǀ𝑥 𝑡 ǀ ≥ 𝛾. If either  𝑖  𝑎 > 0, 𝑏 > 0    𝑜𝑟  𝑖𝑖 𝑝 ≥ 0, 𝑞 

> 0 hold, then the zero solution  of  1 is uniformly and asymptotically stable. 

Abstract 

          In this paper, sufficient conditions are derived for asymptotic 
stability and uniformly asymptotic stability for impulsive functional 
differential equation using piecewise continuous differential equation. 
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(B) The same is concluded if 

                𝑝𝑉1
′ 𝑡, 𝑥𝑡 + 𝑞𝑉2

′  𝑡, 𝑥𝑡 ≤  𝜇 𝑉1
′ 𝑡, 𝑥𝑡  

holds in place of  2  and if either  𝑖  𝑎 > 0, 𝑏
> 0 𝑜𝑟  𝑖𝑖 𝑝 > 0, 𝑞 > 0. 

Proof 

 We first prove the uniform stability. For given 
𝜀 > 0,we may choose a 𝛿 = 𝛿 𝜀 > 0 such that  𝑊2 𝛿 <
𝑊1   𝜀 . For any  

𝜎 ≥ 𝑡0 and 𝜑 ∈ 𝑃𝐶𝛿 , let 𝑥 𝑡, 𝜎, 𝜑 be the solution of  1 . 
We will prove that  

ǀ𝑥 𝑡, 𝜎, 𝜑 ǀ ≤ 𝜀,           𝑡 ≥ 𝜎 

Let 𝑥 𝑡 = 𝑥 𝑡, 𝜎, 𝜑  and 𝑉1 𝑡 = 𝑉1 𝑡, 𝑥𝑡 , 𝑉2 𝑡 =
𝑉2 𝑡, 𝑥𝑡  and 𝑉 𝑡 = 𝑉 𝑡, 𝑥𝑡 .  
Then by assumption (iv), 

𝑉 ′ 𝑡, 𝑥𝑡 ≤ 0,         𝜎 ≤ 𝑡𝑘−1 ≤ 𝑡 < 𝑡𝑘  ,    𝑘 ∈ 𝑍+ 

and so V(t) is non increasing on the interval of the form 

[𝑡𝑘−1 , 𝑡𝑘). From condition (ii) 

𝑉 𝑡𝑘 −  𝑉 𝑡𝑘
− = 𝑉 𝑡𝑘 , 𝑥(𝑡𝑘

−) + 𝐼𝑘 𝑡𝑘 , 𝑥(𝑡𝑘
−)  −

 𝑉 𝑡𝑘
−, 𝑥(𝑡𝑘

−) ≤ 0               

Thus V(t) is non increasing on [𝜎, ∞). We have 

𝑊1 ǀ𝑥 𝑡 ǀ ≤   𝑉 𝑡  ≤  𝑉 𝜎 ≤  𝑊2 𝜎 < 𝑊1 𝜀 ,
𝑡 ≥ 𝜎    

This implies with the monotonicity of W1,|x(t)| < ε for 

t ≥ σ and so that the zero solution of (1) is uniformly 

stable. 
To show asymptotic stability, for a given t0 ∈ R+ and a 

fixed 0 < H2 < H1 , take η = η t0 = δ(t0 , H2) > 0, where 

δ is that in the definition of stability and for a given 

φ ∈ PC(η), let x t = x(t, σ, φ) be a solution of (1). 

Suppose for contradiction that x(t) ↛ 0 as t → ∞. Then 

there is a sequence {Ti} and an ε0 > 0 with Ti → ∞ and 

|x(Ti)| > ε0. Define ε2 = W2
−1(

W1 ε0 

2
) then there is a 

sequence {si} with si → ∞ and |x(si)| < ε2. Otherwise 
there is an S ≥ t0 such that 

|x(t)| ≥ ε2 for t ≥ S and  

av1 t + bv2 t ≤

av1 S + h + bv2 S + h −  λ s W4 inf  x σ  : s − h ≤
t

S+h

σ≤sds+                                                                                                                                
S+h≤tk≤t[Vtk−S+h≤tk≤t[Vtk−Vtk−)]  

≤ av1 S + h + bv2 S + h − W4(ε2) λ s ds → −∞

t

S

 

as t → ∞, which contradicts either av1 t + bv2 t ≥ 0 if 

(i) holds or 
                  av1 t + bv2 t ≥ − a W2 H2 −  b (pv1 t0 +
qV2 t0 )/q  
 if (ii) holds. 
    In Case (A), we may assume Ti−1 < si < Ti  by 

choosing and renumbering if necessary. Then we can 
take a sequence {ti} such that si < ti < Ti ,  x ti  = ε2 
and |x(t)| > ε2 for ti < t ≤ Ti. 

Then pv1 Ti + qv2 Ti −  pv1 Ti−1 + qv2 Ti−1   

≤ pv1 Ti + qv2 Ti −  pv1 ti + qv2 ti  

+   V tk − V tk
−  

ti≤tk≤Ti

≤ −μ ε2  v1 Ti − v1 ti    

≤  −μ ε2 W1(ε0)/2 

and a contradiction follows from 

𝑝𝑣1 𝑇𝑛 + 𝑞𝑣2 𝑇𝑛 
= 𝑝𝑣1 𝑇1 + 𝑞𝑣2 𝑇1 

+   𝑝𝑣1 𝑇𝑖 + 𝑞𝑣2 𝑇𝑖 

𝑛

𝑖=2

−  𝑝𝑣1 𝑇𝑖−1 

+                                                                                             𝑞𝑣2 𝑇𝑖−1   

+   𝑉 𝑡𝑘 − 𝑉 𝑡𝑘
−  

𝑇𝑖−1≤𝑡𝑘≤𝑇𝑖

 

 

  ≤ 𝑝𝑣1 𝑇1 + 𝑞𝑣2 𝑇1 −
 𝑛−1 𝜇 𝜀2 𝑊1 𝜀0 

2
→ −∞  

as 𝑛 → ∞ 

     In Case (B), we may assume 𝑠𝑖−1 < 𝑇𝑖 < 𝑠𝑖  and take 

{𝑡𝑖} with 𝑇𝑖 < 𝑡𝑖 < 𝑠𝑖 ,  𝑥 𝑡𝑖  = 𝜀2 and |𝑥(𝑡)| > 𝜀2 for 
𝑇𝑖 ≤ 𝑡 < 𝑡𝑖 so that 

𝑝𝑣1 𝑡𝑖 + 𝑞𝑣2 𝑡𝑖 −  𝑝𝑣1 𝑡𝑖−1 + 𝑞𝑣2 𝑡𝑖−1    

≤ 𝑝𝑣1 𝑡𝑖 + 𝑞𝑣2 𝑡𝑖 −  𝑝𝑣1 𝑇𝑖 + 𝑞𝑣2 𝑇𝑖  

+   𝑉 𝑡𝑘 − 𝑉 𝑡𝑘
−  

𝑇𝑖≤𝑡𝑘≤𝑡𝑖

 

          ≤ 𝜇 𝜀2 (𝑣1 𝑡𝑖 − 𝑣1 𝑇𝑖 )  

            ≤ −𝜇 𝜀2 𝑊1(𝜀0)/2  

This implies a contradiction by the same argument as in 
case (A) 
Therefore, 𝑥(𝑡) → 0 as 𝑡 → ∞. The proof is complete. 
Theorem 2.  

  Assume that there exist 𝑉1 , 𝑉2 ∈ 𝑣0(. ) and 

𝑊1 ,𝑊2 ,𝑊3 ,𝑊4 ∈ ℜ such that 

a) 𝑊1|𝜑(0)| ≤ 𝑉(𝑡, 𝜑) ≤ 𝑊2|𝜑(0)| where 𝑉 𝑡, 𝜑 =
𝑉1 𝑡, 𝜑 + 𝑉2(𝑡, 𝜑) 

b) 𝑉 𝑡𝑘 , 𝑥 + 𝐼𝑘 𝑡𝑘 , 𝑥  − 𝑉(𝑡𝑘
−, 𝑥) ≤ 0, 𝑘 ∈ 𝑍+ 

c) 𝑎𝑉 ′
1 𝑡, 𝑥𝑡 + 𝑏𝑉 ′

2 𝑡, 𝑥𝑡 ≤
−𝜆 𝑡 𝑊3(inf  𝑥 𝑠  ; 𝑡 − 𝑕 ≤ 𝑠 ≤ 𝑡 ) 

𝑎𝑛𝑑                    𝑝𝑉′
1 𝑡, 𝑥𝑡 + 𝑞𝑉′

2(𝑡, 𝑥𝑡)
≤ 0                                                                         

Where 𝑎2 + 𝑏2 ≠ 0, 𝑝2 + 𝑞2 ≠ 0 𝑎𝑛𝑑  

                      lim𝑆→∞  𝜆 𝑠 𝑑𝑠 = ∞
𝑡+𝑆

𝑡
  uniformly in 𝑡 ∈ 𝑅+ 

A. Suppose that there is a 𝜇 = 𝜇(𝛾) > 0 for each 

0 < 𝛾 < 𝐻1 such that  

𝑝𝑉 ′
1 𝑡, 𝑥𝑡 + 𝑞𝑉 ′

2(𝑡, 𝑥𝑡)

≤ −𝜇𝑉 ′
1 𝑡, 𝑥𝑡                                                   (3)  

If |𝑥(𝑡)| ≥ 𝛾. If either (i) 𝑎 > 0, 𝑏 ≥ 0 or (ii) 
𝑝 ≥ 0, 𝑞 ≥ 0 hold, then the zero solution of (1) 

is uniformly asymptotically stable. 
B. The same is concluded if (3) is replaced by  

𝑝𝑉 ′
1 𝑡, 𝑥𝑡 + 𝑞𝑉 ′

2

≤ 𝜇𝑉 ′
1 𝑡, 𝑥𝑡                                                              

And if either  (i) 𝑎 > 0, 𝑏 ≥ 0 or (ii) 𝑝 > 0, 𝑞 ≥ 0 hold 
Proof 

  Uniform Stability can be proven as stability in 
Theorem 1. 
Set 𝜂 = 𝛿(𝐻2) for a fixed 0 < 𝐻2 < 𝐻1 and δ in the 

definition of uniform stability. For given 𝑡0 ∈ 𝑅+, 𝜑 ∈ 𝐶𝜂 , 

let 𝑥 𝑡 = 𝑥(𝑡, 𝜎, 𝜑) be a solution of (1). Let 𝜀 > 0 be 

given and take 𝛿 = 𝛿(𝜀) > 0 of uniform stability. Define 

𝛿1 = 𝑊2
−1(

𝑊1 𝛿 

2
). Choose a 𝑆 = 𝑆(𝜀) > 0 with  

       𝜆 𝑠 𝑑𝑠 > 2(|𝑎|𝑊2 𝐻2 + |𝑏|𝑊3 𝐻2 )/𝑊4(𝛿1)
𝑡+𝑆

𝑡
 

For 𝑡 ∈ 𝑅+ and an integer 𝑁 = 𝑁(𝜀) ≥ 1 with 
𝑁𝜇 𝛿1 𝑊1(𝛿)/2 > 2(|𝑝|𝑊2 𝐻2 + |𝑞|𝑊3 𝐻2 ) 
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Define 𝑇 = 𝑇 𝜀 = 𝑁(𝑆 + 2𝑕). Suppose, for 

contradiction, that ||𝑥𝑡|| ≥ 𝛿 for 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇. 

In Case (A), for 1 ≤ 𝑖 ≤ 𝑁, there is a  

+ 𝑖 − 1  𝑆 + 2𝑕 ≤ 𝑠𝑖 ≤ 𝑡0 +  𝑖 − 1  𝑆 + 2𝑕 + 𝑕 + 𝑆 

With |𝑥(𝑠𝑖)| < 𝛿1.Otherwise |𝑥(𝑡)| ≥ 𝛿1 on this interval 

and, for  𝐼𝑖 =  𝑡0 +  𝑖 − 1  𝑆 + 2𝑕 + 𝑕, 𝑡0 +  𝑖 − 1  𝑆 +
2𝑕+𝑕+𝑆, 𝑣1𝑡=𝑉1(𝑡,𝑥𝑡) and 𝑣2𝑡=𝑉2(𝑡,𝑥𝑡), we have 

   −2(|𝑎|𝑊2 𝐻2 + |𝑏|𝑊3 𝐻2 ) 

≤ 𝑎𝑣1 𝑡0 +  𝑖 − 1  𝑆 + 2𝑕 + 𝑕 + 𝑆 + 𝑏𝑣2(𝑡0

+  𝑖 − 1  𝑆 + 2𝑕 + 𝑕 + 𝑆) 
  (−𝑎𝑣1 𝑡0 +  𝑖 − 1  𝑆 + 2𝑕 + 𝑕 + 𝑏𝑣2(𝑡0 +
 𝑖 − 1  𝑆 + 2𝑕 + 𝑕)) 

     ≤ − 𝜆 𝑡 𝑊4 inf  𝑥 𝑠  : 𝑡 − 𝑕 ≤ 𝑠 ≤ 𝑡  𝑑𝑠 

   ≤ −𝑊4(𝛿1)  𝜆 𝑡  <  −2( 𝑎 𝑊2 𝐻2 +  𝑏 𝑊3 𝐻2 ) 

This inequality also holds true as per condition (ii) 
a contradiction.  
From the supposition , for 1 ≤ 𝑖 ≤ 𝑁, there is a                            

𝑡0 +  𝑖 − 1  𝑆 + 2𝑕 + 𝑕 + 𝑆 ≤ 𝑇𝑖 ≤ 𝑡0 + 𝑖 𝑆 + 2𝑕  
Such that |𝑥(𝑇𝑖)| ≥ 𝛿. Thus, there is an 𝑠𝑖 < 𝑡𝑖 < 𝑇𝑖 with 
 𝑥 𝑡𝑖  = 𝛿1 and |𝑥(𝑡)| > 𝛿1 for 𝑡𝑖 < 𝑡 ≤ 𝑇𝑖 . We obtain 

𝑝𝑣1 𝑡0 + 𝑖 𝑆 + 2𝑕  + 𝑞𝑣2 𝑡0 + 𝑖 𝑆 + 2𝑕  

− (𝑝𝑣1 𝑡0 +  𝑖 − 1  𝑆 + 2𝑕  

+ 𝑞𝑣2 𝑡0 +  𝑖 − 1  𝑆 + 2𝑕 )  
 ≤ 𝑝𝑣1 𝑇𝑖 + 𝑞𝑣2 𝑇𝑖 − (𝑝𝑣1 𝑡𝑖 + 𝑞𝑣2 𝑡𝑖 ) 

 ≤ −𝜇 𝛿1  𝑣1 𝑇𝑖 − 𝑣1 𝑡𝑖    ≤  −𝜇 𝛿1 𝑊1(𝛿)/2 

And 

 −2  𝑝 𝑊2 𝐻2 +  𝑞 𝑊3 𝐻2  ≤  𝑝𝑣1 𝑡0 + 𝑁 𝑆 + 2𝑕  +

𝑞𝑣2 𝑡0 + 𝑁 𝑆 + 2𝑕  − (𝑝𝑣1 𝑡0 + 𝑞(𝑣2 𝑡0 ) 

 = (𝑝𝑣1 𝑡0 + 𝑖 𝑆 + 2𝑕  + 𝑞𝑣2 𝑡0 + 𝑖 𝑆 + 2𝑕  ) −𝑁
𝑖=1

(𝑝𝑣1𝑡0+𝑖−1𝑆+2𝑕+𝑞𝑣2𝑡0+𝑖−1𝑆+2𝑕)      

  ≤ −𝑁𝜇 𝛿1 𝑊1(𝛿)/2 <  −2( 𝑝 𝑊2 𝐻2 +  𝑞 𝑊3 𝐻2 ), 

This inequality also holds true as per condition (ii) 
a contradiction. 
In Case (B), we can take, for 1 ≤ 𝑖 ≤ 𝑁, 𝑡0 +
 𝑖 − 1  2𝑕 + 𝑆 + 𝑕 ≤ 𝑠𝑖 ≤ 𝑡0 + 𝑖 2𝑕 + 𝑆   with   |𝑥(𝑠𝑖)| <
𝛿1,      𝑡0 +  𝑖 − 1  2𝑕 + 𝑆 ≤ 𝑇𝑖 ≤ 𝑡0 +  𝑖 − 1  2𝑕 + 𝑆 +
𝑕  with |𝑥(𝑇𝑖)| ≥ 𝛿 and 𝑇𝑖 < 𝑡𝑖 < 𝑠𝑖 with  𝑥 𝑡𝑖  = 𝛿1 , 

|𝑥(𝑡)| > 𝛿1 for 𝑇𝑖 ≤ 𝑡 < 𝑡𝑖 so that  

𝑝𝑣1 𝑡0 + 𝑖 𝑆 + 2𝑕  + 𝑞𝑣2 𝑡0 + 𝑖 𝑆 + 2𝑕  

− (𝑝𝑣1 𝑡0 +  𝑖 − 1  𝑆 + 2𝑕  

+ 𝑞𝑣2 𝑡0 +  𝑖 − 1  𝑆 + 2𝑕 )  
   ≤ 𝑝𝑣1 𝑡𝑖 + 𝑞𝑣2 𝑡𝑖 − (𝑝𝑣1 𝑇𝑖 + 𝑞𝑣2 𝑇𝑖 ) 

   ≤ 𝜇 𝛿1  𝑣1 𝑡𝑖 − 𝑣1 𝑇𝑖    ≤  −𝜇 𝛿1 𝑊1(𝛿)/2 

This inequality also holds true as per condition (ii) 
a contradiction follows from this as in case(A) 

    Consequently ||𝑥𝑡′|| < 𝛿 for some 𝑡0 ≤ 𝑡 ′ ≤ 𝑡0 + 𝑇 and 

|𝑥(𝑡)| < 𝜀 for 𝑡 ≥ 𝑡0 + 𝑇. This completes the proof. 
Corollary 

 If there are 𝑉1, 𝑉2 ∈ 𝑣0(. ) and 𝑊1 ,𝑊2 ,𝑊3 ,𝑊4 ∈ ℜ 

satisfying  
a) 𝑊1|𝜑(0)| ≤ 𝑉(𝑡, 𝜑) ≤ 𝑊2|𝜑(0)| 

b) 0 ≤ 𝑉(𝑡, 𝜑) ≤ 𝑊3(  𝜑  ) where 𝑉 𝑡, 𝜑 =

𝑉1 𝑡, 𝜑 + 𝑉2(𝑡, 𝜑) 

c) 𝑉 𝑡𝑘 , 𝑥 + 𝐼𝑘 𝑡𝑘 , 𝑥  − 𝑉(𝑡𝑘
−, 𝑥) ≤ 0 

d) 𝑉 ′
1 𝑡, 𝑥𝑡 + 𝑐1𝑉

′
2(𝑡, 𝑥𝑡) ≤ 0 

e) 𝑉 ′
1 𝑡, 𝑥𝑡 + 𝑐2𝑉

′
2 𝑡, 𝑥𝑡 ≤

−𝜆 𝑡 𝑊4(𝑖𝑛𝑓  𝑥 𝑠  ; 𝑡 − 𝑕 ≤ 𝑠 ≤ 𝑡 ) 
          Where 𝑐1 ≠ 𝑐2 either 𝑐1 ≥ 0 or 𝑐2 ≥ 0 and 

𝑙𝑖𝑚𝑆→∞  𝜆 𝑠 𝑑𝑠 = ∞
𝑡+𝑆

𝑡
  uniformly in 𝑡 ∈ 𝑅+ 

Then the zero solution of (1) is uniformly asymptotically 
stable. 
Proof 

 We may assume that 𝑐1 > 𝑐2. Then 𝑐1 ≥ 0, if 

𝑐2 = 0 

𝑉 ′
1 𝑡, 𝑥𝑡 + 𝑐1𝑉

′
2 𝑡, 𝑥𝑡 ≤ 0 ≤ −𝑉 ′

1 𝑡, 𝑥𝑡  
And the conditions of theorem 2(A ii) are satisfied. 
If 𝑐1 > 0  

𝑉 ′
1 𝑡, 𝑥𝑡 + 𝑐1𝑉

′
2 𝑡, 𝑥𝑡 ≤  𝑐1 − 𝑐2 𝑉

′
2 𝑡, 𝑥𝑡  

                                                       ≤ −(
 𝑐1 − 𝑐2 

𝑐1
)𝑉 ′

1 𝑡, 𝑥𝑡  

Implies uniform stability by Theorem 2(A ii). 
 
Example   Consider the impulsive differential equation 

𝑥 ′ 𝑡 = −𝑎 𝑡 𝑓 𝑥 𝑡  + 𝑏 𝑡 𝑔 𝑥 𝑡 − 𝑕   

𝑥 𝑡𝑘 − 𝑥 𝑡𝑘
− = 𝑐𝑘𝑥 𝑡𝑘

− ,   𝑘 ∈ 𝑍+ 
Where 𝑎: 𝑅+ → 𝑅+,   𝑏: 𝑅+ → 𝑅,   𝑓, 𝑔: 𝑅 → 𝑅 are 

continuous,  𝑥𝑓 𝑥 > 0, for 𝑥 ≠ 0,  𝑔 𝑥  ≤ 𝑐 𝑓 𝑥   for 

𝑐 > 0 and 𝑔 𝑥 ≠ 0 for 𝑥 ≠ 0, |1+𝑐𝑘 | ≤ 1, 𝑘 ∈ 𝑍+ and 
  1 −  1 + 𝑐𝑘   = ∞∞
𝑘=1  

If  |𝑏(𝑠)|𝑑𝑠
𝑡+𝑕

𝑡
 is bounded,  𝑎 𝑡 − 𝛼𝑐|𝑏(𝑡 + 𝑕)| ≥ 0  

For some 𝛼 > 1, and for some 1 ≤ 𝛽 ≤ 𝛼, 𝜆 𝑡 = 𝑎 𝑡 −
𝛽𝑐 𝑏 𝑡 + 𝑕  + (𝛽 − 1)|𝑏(𝑡)| satisfies  

𝑙𝑖𝑚
𝑆→∞

 𝜆 𝑠 𝑑𝑠 = ∞

𝑡+𝑆

𝑡

 

Uniformly in 𝑡 ∈ 𝑅+, then the zero solution is uniformly 

asymptotically stable. 
Proof 

Let 𝑉 = 𝑉1 + 𝑉2 where V1 t,φ = |φ(0)|, 𝑉2 𝑡, 𝜑 =

 |𝑏(𝑡 + 𝑠 + 𝑕)||𝑔(𝜑(𝑠)|
0

−𝑕
𝑑𝑠 

Then 𝑉2(𝑡, 𝜑) ≤   𝑏 𝑠  𝑑𝑠𝑊3(||𝜑||
𝑡+𝑕

𝑡
) for some function 

𝑊3 ∈ ℜ 
And  𝑉1 𝑡𝑘 , 𝑥 + 𝑐𝑘𝑥 − 𝑉1 𝑡𝑘

−, 𝑥 =   1 + 𝑐𝑘 𝑥 −  𝑥 =
 1 −  1 + 𝑐𝑘   𝑉(𝑡𝑘

−, 𝑥) 

Let λk = 1 −  1 + ck ; then  λk = ∞∞
k=1 . We check that 

for any α > 0, there is a β > 0 such that V(t, xt) ≥ α 

implies V1(t, xt) ≥ β. 

Otherwise we must have lim inft→∞V1 t, xt = 0 

We let V t = V1 t, xt + V2(t, xt) 

Then V tk − V tk
− = V1 tk , x tk

− + ckx tk
−  −

V1 tk
−, x tk

−   ≤ 0 

V′
1 t, xt + βV′

2 t, xt 

≤ − a t − βc b t + h    f x t   

−  β − 1  b t   g x t − h   

+  V tk − V(tk
−)

0≤tk≤t

 

≤ −λ t W4 inf  x s  : t − h ≤ s ≤ t   
If ||xt ||≤ H for a fixed 0 < 𝐻 < ∞ and some function W4. 

 If β = 1, for α ≠ 1  V′
1 t, xt + αV′

2 t, xt ≤ 0 

If β > 1              V′
1 t, xt + 1 V′

2 t, xt ≤ 0 
The conditions of the corollary are satisfied and hence 
the zero solution is uniformly asymptotically stable. 
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